General Physics I (PHYS 225)
Fall 2008
Copyright © 2008 by John Stratton

Course Description

Prerequisite: Math155 (Calculus I), may be taken concurrently

Calculus-based. Topics include measurement, kinematics in one and two dimensions, Newton's laws, energy, momentum, rotational kinematics and dynamics, equilibrium, and temperature and heat. Laboratory utilizes computers for data acquisition and analysis. Meets the general education requirement for science. Fall only.

Course Focus

A general physics course is designed for students whose majors include physics, chemistry, and engineering. The mathematical pace of the course is targeted for those who have had trigonometry or pre-calculus and are taking calculus concurrently. The course includes a brief calculus primer.

Text, References and Materials

Bring the required materials to all class meetings.

Required Course Pack: General Physics Lecture Notes & Laboratories (Bookstore)
Required: Scientific Calculator, USB Drive (1 person from each lab group)
Required: Lab Notebook (See criteria below)
Course Schedule

Room: A-152
Lecture: Tuesday & Thursday 5:30-6:45 PM
Laboratory: Thursday 7:00-9:45 PM
Office Hours: Monday 11:00 AM-12:00 PM
Wednesday 2:00-3:00 PM
Thursday 4:00-5:00 PM

Other office hours are available. See the instructor.
For specific lecture and lab days, see the attached schedule.
Please allow additional time on exam days, either before or after the scheduled class.

Course Evaluation

90%-100% A
80%-89% B
70%-79% C
60%-69% D
< 60% F

<table>
<thead>
<tr>
<th>Lecture:</th>
<th>75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams (Equally Weighted)</td>
<td>65%</td>
</tr>
<tr>
<td>Quizzes</td>
<td>10%</td>
</tr>
<tr>
<td>WebCT Conceptual Quizzes</td>
<td>(+2%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab:</th>
<th>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each Lab</td>
<td>100 pts toward total</td>
</tr>
<tr>
<td>Full Lab Reports</td>
<td>200 pts toward total</td>
</tr>
<tr>
<td>Notebook</td>
<td>100 pts toward total</td>
</tr>
<tr>
<td>Penalty for misuse or absence of Notebook</td>
<td>-3 to -10 points</td>
</tr>
<tr>
<td>Penalty for missing prelab assignment</td>
<td>-10 points</td>
</tr>
</tbody>
</table>

Students must have passing averages in both the exams and laboratories to pass the course.
For example, if a student earns a 77.0% exam average, 82.0% quiz average, 62.0% WebCT conceptual quiz average, and an 88.0% lab average, the student’s grade would be (excluding extra credit):

\[
\begin{align*}
0.770 \times 65 &= 50.05 \\
0.820 \times 10 &= 8.20 \\
0.620 \times 2 &= 1.24 \\
0.880 \times 25 &= 22.00 \\
\text{Total} &= 81.5 \text{ B}
\end{align*}
\]
Attendance & Lateness

Lecture: Students are expected to be at all lecture meetings with all class materials. Unscheduled activities that count as labs or quizzes may also occur on lecture days. In general, missed classes are difficult to recover from and will greatly affect a student's ability to succeed (i.e. missing a class puts you in a BIG HOLE!).

Lab: Students may miss one lab for a valid, documented excuse (medical, family emergency, flood, famine, nuclear holocaust, plague of locusts, asteroid collision, etc.). Missing or not submitting more than 1 lab will result in a failing lab grade. If all labs are attended, the lowest lab grade will be dropped. Points will be deducted for lateness in lab.

Late Work:

Lecture: WebCT quizzes cannot be taken after the due date since the answers are discussed at the next class meeting.

Lab: Lab reports are due at the beginning of the next lab meeting unless otherwise specified. Late labs will be penalized one half grade after the start of class on the same day they are due, and one grade thereafter. Labs will not be accepted after one week from the original due date.

Quizzes

Questions will either be conceptual (based on the class notes) or problems (representing either class examples or homework problems). Quiz questions and problems will be asked online via WebCT. In class, a deadline will be discussed by which the instructor must post a quiz if it is due at the next class meeting. Takehome lecture (quiz) problems and online quizzes are due on the due date with no exceptions.

Extra Credit

An extra credit assignment may be done or a retest may be taken to bring up one test score (except the last exam). The instructor will choose the assignment and the conditions under which it is completed. The assignment or retest must be requested by the student and must be completed before the next exam. The makeup grade will be averaged with the test grade and the resultant grade will replace the test grade. This can only be done for tests with a grade lower than 65% and can bring tests up to a maximum of 65%.

The conceptual quizzes given online will be totaled and can add up to 2% to the course average.

Exam Makeups

Exams may only be made up if the student contacts the professor with a valid, documented excuse (see above) by phone, written note, or E-mail. The professor reserves the right to give a different
exam that may be more difficult, or to adjust the grading scale to account for the fact the student is taking the exam under different testing conditions.

Lab Makeup

If students need to miss laboratory for a valid, documented excuse (see above), the instructor must be notified before the scheduled class or immediately after as above. If this is done, a makeup may be possible. Missing or not submitting more than 1 lab will result in a failing lab grade. Students may miss one lab for a valid, documented excuse. If all labs are turned in, then the lowest lab grade will be dropped.

Lab Summaries

For every lab session, you will write a short summary of the lab that you are about to do. It should not be written in the lab notebook because it will be collected at the beginning of the lab. It cannot be late. Summaries are worth 10% of a lab report’s grade. See the criteria attached below.

Academic Honesty

Students are expected to uphold the integrity of the academic process. In addition to personal acts of plagiarism or dishonesty, students are also obligated to report any act of cheating that they witness. Acts of dishonesty will result in disciplinary action as outlined in the Student Handbook. In essence, this means you will receive a "0" for the assignment OR an "F" in the course if the assignment is central to the course. A report will also be made to the Dean of Students. Two such infractions will result in dismissal from the college.

In this course, every person does his or her own work. You may discuss and work on the laboratories together, but the report must be your own work. Blatant copying will result in a "0" for the lab that cannot be dropped. In general, this applies to any assignment that is collected for a grade. Cheating on an exam will result in a failing grade for the course.

Academic Advising

Many students self-advise and pick their own courses, while others seek the advice of registration staff. For one reason or another, we sometimes learn (too late) that students have unrealistic or ill-advised schedules. Please feel free to ask my advice or the advice of your other professors in such matters.
Class Conduct

1. Don’t be late. It’s rude and it interrupts the class. If you miss a prelab discussion, points will be deducted.

2. Turn cell phones off!

3. Do not talk, sharpen pencils, staple or do anything else at times when it might be a distraction to your classmates.

4. I value your input, I want to have discussions, and I must hear your questions. However, you must raise your hand. Sometimes, I wish to let the class think, and you will ruin that if you call out the answer.

The Survival Guide: How to do well in a science course

1. Do all homework on time because
 a. If you let it pile up, you will find it very difficult to do well on the exams.
 b. Studying for a test involves doing the homework again, not the first time.
 c. Review time is review. It is driven by your questions. A conceptual quiz will also occur!

2. Read the appropriate sections in the text. If I said everything, you wouldn’t remember it. In class, we learn to DO and APPLY. Read to round out your learning.

3. Do not understudy for the first exam. Although you get to do a makeup for one exam, you don’t want to have to use it on the first exam.

4. Do not wait until the day that a lab is due to complete it because:
 a. As time goes on, you will forget what was done in lab. Do it while it’s still fresh in your mind.
 b. If you have questions (and you will sometimes), then you will not be able to get them answered in time and will have to turn the lab in late. This results in a deduction of 5 to 10 points.
 c. If you just decide to hand it in with a major mistake, then you will get it back to do again. Your grade starts at an 85 on the second try, and the second time is more difficult (see “a”).

5. Keep a careful lab notebook. It is worth a lab grade.

6. Do not plagiarize or copy. It is dishonest and speaks to your character.

7. Have some fun and enjoy the course. This may be your only opportunity to take a lab science, so enjoy it and take away all that you can from this experience.
Course Goals

Students will

1. develop techniques to view, study and ultimately master scientific material.

2. develop an appreciation for physics and an understanding of what it can tell us about the universe. Students should see how physics can explain various phenomena that they encounter every day.

3. think critically to solve both quantitative and qualitative problems.

4. apply basic concepts of
 a. Measurement
 b. Motion in one and two dimensions
 c. Vectors
 d. Newton’s Laws
 e. Energy
 f. Momentum
 g. Rotational motion
 h. Equilibrium

5. practice modeling physical situations using calculus level mathematics.

6. work independently and in groups to solve problems.

7. gain practice in experimentation and data analysis.

8. write full laboratory reports that fully present an experiment and the theory behind it.

9. use a computer for data acquisition and analysis.
Performance Objectives

Unless otherwise indicated, mastery of the following performance objectives is achieved by accurately defining and describing the specified concept, and applying this concept to assigned problems and derivations. All basic equations will be given on exams, and students will derive needed relationships from them. Exams will consist of short answer questions and problems with the greater weight on the problems.

Laboratory

1. In most cases, a topic will be discussed in lecture before it is used in the lab. The student will apply concepts from lecture. Performance will be satisfactory if students demonstrate through preparedness, performance, and answers to questions that they understand how a given experiment is related to physical principles discussed in lecture.

2. The student will prepare for lab. Performance will be satisfactory if students arrive at the lab on time having read the experiment. Students will demonstrate their preparation by writing a short summary that describes WHAT is being measured or tested in the experiment and HOW it will be measured or tested. Students should know the purpose of the laboratory, be familiar with the procedure, and be able to vocalize any questions concerning the theory or procedure during the prelab discussion.

3. Students will keep a proper laboratory notebook as described on the attached sheet. This lab book must be used for all laboratories.

4. Students will be monitored during the laboratory. The student will demonstrate sound measurement technique. Performance will be satisfactory if students routinely participate as ACTIVE members of their laboratory groups and are observed to take measurements carefully and accurately.

5. The student will calculate using significant figure conventions. This is a graded part of every experimental calculation. Performance will be satisfactory if students routinely apply significant figure conventions to calculations based on experimental data to avoid overstating the accuracy of calculated results.

6. The student will calculate using error analysis as applicable to each experiment. Performance will be satisfactory if student can estimate measurement errors and carry these estimates through calculations to arrive at a range of error for an experimentally determined quantity.

7. Full laboratory reports will be written for some laboratories. A format will be provided. The student will write laboratory reports. Performance will be satisfactory if the student writes laboratory reports that show that the student understands the theory, clearly presents and analyzes the data, and draws reasonable conclusions about the results.
Lecture

1. The student must know the metric units and prefixes given in lecture. English conversions will be given. The student will perform conversions using unit analysis. Performance will be satisfactory if the student can change the units of any given quantity.

2. The student will calculate using significant figure conventions. This is a graded part of every problem. Performance will be satisfactory if students routinely apply significant figure conventions to homework problems to avoid overstating the accuracy of calculated results.

3. The student will not be allowed references. The student will apply concepts from calculus. Performance will be satisfactory if students can differentiate and integrate simple polynomials and relate these operations to rates of change and the area under a curve.

4. The four kinematic equations will be given. The student will solve one dimensional motion problems. Performance will be satisfactory if the student can use the definitions of displacement, velocity, and acceleration with the kinematic equations to solve simple problems in one dimensional motion.

5. The student will not be allowed references. The student will relate the kinematic equations using calculus. Performance will be satisfactory if the student can differentiate x(t) to obtain v(t) and a(t), and integrate to obtain the kinematic equations from definitions of a(t) and v(t).

6. The student will not be allowed references. The student will apply vector concepts. Performance will be satisfactory if the student can perform both analytical and graphical vector addition to add and subtract vectors, and convert from polar coordinates to Cartesian coordinates.

7. The four kinematic equations will be given. The student will solve two dimensional motion problems. Performance will be satisfactory if the student can generalize the kinematic equations to two dimensions and apply them to two dimensional motion problems.

8. Equations will be given. The student will apply Newton's laws. Performance will be satisfactory if the student can state Newton's laws (including the law of gravity) and apply the concepts of inertia, force, and friction to problems. The student should also relate Newton's law of gravity to weight and the local gravitational constant and solve simple problems involving motion under gravity's influence.

9. Equations will be given. The student will identify Newton's second law as a differential equation. Performance will be satisfactory if students can recognize that Newton's second law is a differential equation for which the kinematic equations are a solution.

10. Equations will be given. The student will describe uniform circular motion. Performance will be satisfactory if the student can define uniform circular motion and apply the centripetal force
concept to problems.

11. Equations will be given. The student will define a scaler product. Performance will be satisfactory if students can define the scaler product of two vectors and apply it to compute the work done by a force.

12. Equations will be given. The student will relate work to energy. Performance will be satisfactory if students can relate the QUANTITY work to the energy CONCEPT (Work- Energy Theorem), derive an expression for kinetic energy, and use these concepts to solve problems.

13. Equations will be given. The student will differentiate conservative and nonconservative forces. Performance will be satisfactory if the student can define a conservative force and use this concept to derive and apply an expression for gravitational potential energy.

14. Equations will be given. The student will apply energy conservation concepts. Performance will be satisfactory if the student can apply the law of conservation of energy to problems.

15. Equations will be given. The student will apply momentum concepts. Performance will be satisfactory if the student can derive and relate expressions for impulse and momentum from Newton's second law, and apply momentum conservation to collisions in one and two dimensions.

16. Equations will be given. The student will define angular kinematic quantities. Performance will be satisfactory if the student can relate linear quantities like position, velocity, acceleration, force, work, energy, and momentum to their angular counterparts and apply these concepts to problems.

17. Equations will be given. The student will define a vector product. Performance will be satisfactory if the student can define the vector product, find the vector product between two vectors if given the definition, and relate vector products to torque and the vector nature of angular quantities.

18. Equations will be given. The student will derive moment of inertia expressions. Performance will be satisfactory if the student can use integral calculus to derive moments of inertia for simple macroscopic objects.

19. Equations will be given. The student will solve equilibrium problems. Performance will be satisfactory if the student can apply force and torque concepts to problems of static equilibrium.

20. **Time Allowing**: Equations will be given. The student will define temperature. Performance will be satisfactory if the student can define temperature, describe and relate the various temperature scales in use, and define absolute zero.

21. **Time Allowing**: Equations will be given. The student will differentiate temperature and heat. Performance will be satisfactory if the student can differentiate heat and temperature by relating them to work and energy.
22. *Time Allowing*: Equations will be given. The student will describe thermal properties of matter. Performance will be satisfactory if the student can describe and apply thermodynamic properties like length / volume expansion, specific heat and latent heat.

23. *Time Allowing*: Equations will be given. The student will describe energy transfer mechanisms. Performance will be satisfactory if the student can describe and define mechanisms of energy transfer and apply these concepts to problems.

Developed/Revised : 10/13/08
Tentative Schedule (Phys 225)

The instructor reserves the right to change the topics that are covered or their order.

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Chapters / Labs / Exams</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T 9/2</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 1 Measurement, Metric Units, Significant Figures and Conversions</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>R 9/4</td>
<td>Chapter 1 Measurement, Metric Units, Significant Figures and Conversions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab Measurement I</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>T 9/9</td>
<td>Lecture Calculus</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>R 9/11</td>
<td>Chapter 2 Kinematics in 1 Dimension</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab Measurement II</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>T 9/16</td>
<td>Chapter 2 Kinematics in 1 Dimension</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>R 9/18</td>
<td>Chapter 3 Vectors</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab Motion with Constant Acceleration: The Kinematic Equations</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>T 9/23</td>
<td>Chapter 4 Motion in 2 Dimensions</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>R 9/25</td>
<td>Chapter 4 Motion in 2 Dimensions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab Projectile Motion</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>T 9/30</td>
<td>Review Measurement, the Metric System, Vectors, Motion in 1 and 2 Dimensions</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>R 10/2</td>
<td>Exam 1 Measurement, the Metric System, Vectors, Motion in 1 and 2 Dimensions</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>T 10/7</td>
<td>Chapters 5 & 14 Laws of Motion</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>R 10/9</td>
<td>Chapters 5 & 14 Laws of Motion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab Atwood Machine</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>T 10/14</td>
<td>Chapters 5 & 14 Laws of Motion</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>R 10/16</td>
<td>Chapter 6 Circular Motion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab Friction</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>T 10/21</td>
<td>Chapter 6 Circular Motion</td>
<td></td>
</tr>
<tr>
<td>Week</td>
<td>Date</td>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>8</td>
<td>R 10/23</td>
<td>Review</td>
<td>Laws of Motion and Circular Motion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab</td>
<td>Finish Friction or Centripetal Force</td>
</tr>
<tr>
<td>9</td>
<td>T 10/28</td>
<td>Exam 2</td>
<td>Laws of Motion and Circular Motion</td>
</tr>
<tr>
<td>9</td>
<td>R 10/30</td>
<td>Chapter 7</td>
<td>Work and Energy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab</td>
<td>The Work-Energy Theorem</td>
</tr>
<tr>
<td>10</td>
<td>T 11/4</td>
<td>Chapter 7 & 8</td>
<td>Work and Energy & Potential Energy</td>
</tr>
<tr>
<td>10</td>
<td>R 11/6</td>
<td>Chapter 8</td>
<td>Potential Energy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab</td>
<td>Conservation of Energy?</td>
</tr>
<tr>
<td>11</td>
<td>T 11/11</td>
<td>Chapter 9</td>
<td>Linear Momentum and Collisions</td>
</tr>
<tr>
<td>11</td>
<td>R 11/13</td>
<td>Chapter 9</td>
<td>Linear Momentum and Collisions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab</td>
<td>Impulse and Momentum</td>
</tr>
<tr>
<td>12</td>
<td>T 11/18</td>
<td>Review</td>
<td>Work, Energy and Momentum</td>
</tr>
<tr>
<td>12</td>
<td>R 11/20</td>
<td>Exam 3</td>
<td>Work, Energy and Momentum</td>
</tr>
<tr>
<td>13</td>
<td>T 11/25</td>
<td>Chapter 10</td>
<td>Rotation of a Rigid Object</td>
</tr>
<tr>
<td>13</td>
<td>R 11/27</td>
<td></td>
<td>Thanksgiving</td>
</tr>
<tr>
<td>14</td>
<td>T 12/2</td>
<td>Chapter 10</td>
<td>Rotation of a Rigid Object</td>
</tr>
<tr>
<td>14</td>
<td>R 12/4</td>
<td>Chapter 11</td>
<td>Angular Momentum and Torque</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab</td>
<td>Moment of Inertia</td>
</tr>
<tr>
<td>15</td>
<td>T 12/9</td>
<td>Chapter 11</td>
<td>Angular Momentum and Torque</td>
</tr>
<tr>
<td>15</td>
<td>R 12/11</td>
<td>Chapter 12</td>
<td>Static Equilibrium</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab</td>
<td>Cleanup Moment of Inertia or Equilibrium</td>
</tr>
<tr>
<td>16</td>
<td>TBA</td>
<td></td>
<td>Review Rotational Motion</td>
</tr>
<tr>
<td>16</td>
<td>TBA</td>
<td>Exam 4</td>
<td>Rotational Motion</td>
</tr>
</tbody>
</table>
Preab Summary Criteria

For every lab session, you will write a short summary of the lab that you are about to do. It should not be written in the lab notebook because it will be collected at the beginning of the lab. It cannot be late. Summaries are worth 10% of your lab grade.

The summary should address the following questions. Number them.

1. **What is the Goal?** Specifically, what will you have found, compared, etc. by the end of lab? (Typically 1 to 3 sentences)

2. **What measurements are you taking?** (I.e., what measurements lead to the “goal” you mentioned above?) How or with what are you taking them? (Typically a few sentences to a paragraph)

3. **How is the result (goal) calculated or determined from the measurements?** (I.e., relate #1 and #2 above.) How is the data being analyzed? Give the equations if known.

4. **Anything else worth mentioning?** What was unclear?
Laboratory Notebook

(A link to interactive sample notebook pages may be found on my homepage.)

Purpose:
To provide a formal, organized work space/log in which one can record data and work through the calculations of an experiment. It will help you organize your thoughts and retain useful information.

General:

The pages should be fastened securely, so the laboratory notebook should not be spiral-bound or perforated. A string-bound composition notebook is a good example of an acceptable notebook.

1. Write in pen. Neatly cross out mistakes. No white out! Do not rip pages out!

2. The inside cover should have information such as your name, address, home phone number, instructor, etc. This will ensure that the notebook and all the data that you have worked so hard to obtain will always find its way back to you.

3. The third page is where you should start a table of contents. Update this as necessary.

4. Number the pages as you go, using both sides of each page.

5. The first experiment should start on about the 5th page.

6. Skip a few pages between experiments.

7. Keep the notebook in chronological order. (I.e., record the data as it comes.) Avoid leaving space for things and filling them in later.

8. If you miss a lab, you must still write the title and date of the experiment at the appropriate point in the notebook.

9. Use the last several pages for reference. Write universal constants, equations, and reminders that you find frequently useful.

10. **Show your lab notebook to the instructor before leaving lab!**
For each experiment, **label** the following sections:

1. **Title, Experiment Number, Date, Lab Partners, etc.**
2. **Lecture Notes**

 Record any diagrams, mathematical derivations and procedural notes given by the instructor. The **purpose** of the experiment should be prominently displayed first. Everything mentioned in the prelab discussion should be here.

3. **Data/Calculations** *(Start a new page)*

 Any data you take goes here first!!! Data must be taken directly into the laboratory notebook **as you acquire it**. The laboratory report is a final draft only. I reserve the right to deduct points if you are not taking data directly into the notebook. Also, attempt all calculations in the notebook first. Again, the laboratory report is a final draft only. Your **results** should stand out!

Remember: Data is taken directly into the lab notebook. Your first attempts at calculations are also written there. You don't have to write everything twice, but make sure your calculations are correct in the notebook before attempting to fill in the lab report. **If you are observed not using your lab notebook, a penalty of 10 points off your lab grade will result!**
‘Full” Laboratory Report Format (For Some Labs)
See the link on my homepage for an example of a full lab report.

Abstract: Summarize your results in written form. What was measured? How was it measured? What was your result? Did it agree with theory? (1 paragraph).

"The local gravitational constant was measured by timing a falling metal bearing with a pendulum of known period. Our result was \(g = 10.0 \text{ m/s}^2 \pm 0.1 \text{ m/s}^2 \). This does not agree with the accepted value of 9.806 m/s^2. Possible sources of error are … "

Theory: In this section, you should:
1. Write a general introduction describing the relevant theory. Describe the theory behind the lab, introducing any needed concepts and quantities.
2. Use basic equations to derive those used in the experiment. Don't just list equations unless instructed to. Explain how they are applied to the experiment. In many cases, you will need to refer to a diagram of the apparatus or a free-body diagram. For example, a portion of the theory section may look like:

 One common definition of torque is
 \[\tau = I \alpha \]
 If you can measure the applied torque, \(\tau \), and the angular acceleration, \(\alpha \), "\(I \)" may be determined. For the system shown in Figure 2, the applied torque is given by
 \[\tau = Fr \sin(\theta) \]
 where \(r \) is the radius and the tension, \(T \), is given by
 \[T = m(g - \ddot{a}) \]
 This may be derived as follows….

Experimental: The goal of this section is to tell the reader how the experiment was performed and what was used so that it may reproduced.
1. List equipment used in this laboratory.
2. Draw any apparatus used to take measurements and label measured quantities.
3. Summarize the procedure using the past tense. Don't use a "recipe" format (i.e. do not write “Step 1, 2, 3…”). Use a discussion format. Explain how the apparatus was used, relating it to the quantities listed in the Theory section.

Data & Analysis: Present the data using one or more tables. You may include the results of the analysis in the same tables, if appropriate. Then, perform calculations using the data to obtain your results. Put any needed graphs here. Perform error analysis, if applicable.

Results/Discussion: Discuss probable causes of errors and the meaning of your results. Dig deep! How would you improve this experiment next time? What is the next experiment you would do?
Welcome to WebCT!

WebCT is a suite of tools developed by the University of British Columbia to deliver sophisticated Web-based courses. It is presently being used by universities and colleges all over the world to deliver online learning. If you have taken an online course at ACCC before, chances are you may have used WebCT already.

In this course, your instructor has decided to use some of WebCT’s tools to help enhance your overall learning experience. Some of the tools you might use are for communicating with your instructor and fellow students, like the Mail, Discussions or Chat tools, while other tools allow you to access course handouts and materials, or take online quizzes. If you have any trouble using the tools, you can click on "Help," next to "Course Map" at the top of your screen.

To get into WebCT, follow these directions:

1. Go to http://webct.atlantic.edu:8900/
2. Click "Log on to My WebCT."
3. Enter your User Name, which is your last name and the last 4 digits of your Social Security #. For example: smith1234. Do not use any spaces, and use all lower case letters. (Note: If your last name is hyphenated, for example: Smith-Jones, then only use the first part of the name, followed by the last 4 digits of your Social Security #. For example: smith1234.)
4. Enter the Password, which is your birthday (mm/dd/yy - no dashes or spaces). Eg. If you were born on May 21, 1967, you would type: 052167
5. Click OK.
6. Click on the course name located in the upper left corner to enter the course.

If you have any technical trouble with getting into your course, feel free to contact the Instructional Technology Department during business hours by phone (1-800-617-2191) or via the Web at http://www.atlantic.edu/onlinehelp

A Note about accessing your course from home:

Please use one of the recommended web browsers: Microsoft Internet Explorer 5.0, 5.5, 6.0 (PC), Microsoft Internet Explorer 5.1 (Mac OS9, OSX.1), Microsoft Internet Explorer 5.2 (Mac OS9, OSX.2), Netscape 6.2.x (PC and Mac), Netscape 7.0 (PC and Mac OSX). AOL users: There may be some problems with taking online tests. If this happens to you,
do not use the AOL browser to get into your WebCT course. Instead, connect to the Internet using AOL, minimize AOL and use one of the recommended browsers. Internet Explorer users are urged NOT to save their passwords when login box appears.

(If you do not have a computer at home, you can still access WebCT in any one of the computers labs at our Mays Landing, Atlantic City or Cape May campus locations.)

Frequently Asked Questions

What do I need on my home computer?
You'll need Windows 98, 2000 or XP, or Macintosh OS9, OS10.1.x, 10.2.x. You will need a connection to the Internet (e.g. 56K Dialup, Cable, or DSL, etc.) You should also have one of the recommended browsers:
• AOL 7.0 and 8.0 (PC)
• Microsoft Internet Explorer 5.0, 5.5, 6.0 (PC)
• Microsoft Internet Explorer 5.1 (Mac OS9, OSX.1)
• Microsoft Internet Explorer 5.2 (Mac OS9, OSX.2)
• Netscape 6.2.x (PC and Mac)
• Netscape 7.x (PC and Mac OSX)

The semester’s officially started, but I still cannot log in. Now what?
Be sure you are typing your login information (UserID and Password or Course codes) correctly as listed on the first page of this letter. If you still need help, call the ACCC Online Course Helpline (1-800-617-2191) or send your question via the Online Help Request Form at: http://www.atlantic.edu/onlinehelp

What if I’m able to access my course just fine, but later in the semester I cannot get in?
If at any time during the semester our academic servers go down for maintenance or technical problems, you can verify their status by checking the Server Status Page, at http://www.atlantic.edu/status.html

I have a personal firewall on my home PC. Is this a problem?
YES. Look at your firewall software documentation for how to temporarily disable the firewall when you want to work on your online course.

I have software on my computer that stops those annoying Internet pop-up ads. Is this a problem?
YES. Some of our online courses have tools that open in new windows (like Mail, Quizzes, etc). Refer to the documentation that came with your pop-up stopper software to temporarily disable it when you want to work on your course.

Copyright © 2008 by John Stratton
I use Yahoo Companion. Is this a problem?
YES. Disable it when you want to work on your online course.

When I attempt to log in to WebCT I receive a message: "You entered an incorrect username or password."

Your username is your last name plus the last 4 digits of your SS#. Your password is your birthday (mm/dd/yy - no dashes or spaces).

When I attempt to log in to WebCT I receive a message: "Page cannot be displayed." OR "When I attempt to go to WebCT I receive a blank screen or message: "Unauthorized to view this page."

If you have a firewall installed on your computer, you must disable it or open up port 8900 on it to access your course through WebCT. Look at your specific firewall software documentation for how to temporarily disable it.

Every time I click to log on to WebCT, I am re-directed to a search engine (perfectnav).

Make sure that you do not have Kazaa or another peer to peer (P2P) file sharing service installed on your computer. If so, it's been known to conflict with logging into WebCT in many instances. If that's the case, it must be disabled or even sometimes uninstalled for you to be able to log into WebCT.

When I click on Mail and Discussions or when I try to take an exam nothing seems to happen.

If you are having difficulties with taking Exams or using the Mail and Discussions tools then you probably have a pop-up blocker installed on your computer. If so, disable the pop-up blocker software for those WebCT tools to work.

I can access my course, but when I try to click on any of the icons on the homepage of the course I get a blank screen.

Check to see if you have Yahoo Companion or another Internet Companion installed on Internet Explorer's toolbar. If Yahoo Companion is installed, you will see a red Y on the toolbar near the top of Internet Explorer. You will need to click on this Y and uninstall Yahoo Companion to eliminate the problem.