College Physics I (PHYS 125)
Fall 2008
Copyright © 2008 by John Stratton

Course Description

Prerequisite: MATH 122 (College Algebra) or MATH 150 (Pre-Calculus), either may be taken concurrently.

Algebra/trigonometry based. Topics include measurement, kinematics in one and two dimensions, Newton's laws, energy, momentum, rotational kinematics and dynamics, and temperature and heat. Laboratory utilizes computers for data acquisition and analysis. Meets general education requirement for science. Fall only.

Course Focus

An algebra/trigonometry-based physics course is designed for students whose majors may not require calculus. These include premedical studies, four-year physical therapy programs, and the life sciences. While not technically rigorous, it covers topics that are similar to a General Physics course (plus Fluids and Heat) with similar conceptual development. The mathematical level of the course assumes that college algebra or pre-calculus is being taken concurrently. Trigonometry is introduced as it is needed.

Text, References and Materials

Bring the required materials to all class meetings.

Required: "Physics", 6th ed. by Giancoli (0-13-060620-0)
Required Course Pack: College Physics Lecture Notes & Laboratories (Bookstore)
Required: Scientific Calculator, USB Drive (1 person from each lab group)
Required: Lab Notebook (See criteria below)
Course Schedule

Room: A-152
Lecture: Monday & Wednesday 12:30-1:45 PM
Laboratory: Monday 2:00-4:45 PM
Office Hours: Monday 11:00 AM-12:00 PM
 Wednesday 2:00-3:00 PM
 Thursday 4:00-5:00 PM

Other office hours are available. See the instructor.
For specific lecture and lab days, see the attached schedule.
Please allow additional time on exam days, either before or after the scheduled class.

Course Evaluation

Letter grades will be determined as follows.
90%-100% A
80%-89% B
70%-79% C
60%-69% D
< 60% F

<table>
<thead>
<tr>
<th>Lecture:</th>
<th>75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams (Equally Weighted)</td>
<td>65%</td>
</tr>
<tr>
<td>Quizzes</td>
<td>10%</td>
</tr>
<tr>
<td>WebCT Conceptual Quizzes (+2%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab:</th>
<th>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each Lab</td>
<td>100 pts toward total</td>
</tr>
<tr>
<td>Full Lab Reports</td>
<td>200 pts toward total</td>
</tr>
<tr>
<td>Notebook</td>
<td>100 pts toward total</td>
</tr>
<tr>
<td>Penalty for misuse or absence of Notebook</td>
<td>-3 to -10 points</td>
</tr>
<tr>
<td>Penalty for missing prelab assignment</td>
<td>-10 points</td>
</tr>
</tbody>
</table>

Students must have passing averages in both the exams and laboratories to pass the course.
For example, if a student earns a 77.0% exam average, 82.0% quiz average, 62.0% WebCT conceptual quiz average, and an 88.0% lab average, the student’s grade would be (excluding extra credit):

\[
\begin{align*}
0.770 \times 65 &= 50.05 \\
0.820 \times 10 &= 8.20 \\
0.620 \times 2 &= 1.24 \\
0.880 \times 25 &= 22.00 \\
Total &= 81.5 \\
\end{align*}
\]

B

Copyright © 2008 by John Stratton
Attendance & Lateness

Lecture: Students are expected to be at all lecture meetings with all class materials. Unscheduled activities that count as labs or quizzes may also occur on lecture days. In general, missed classes are difficult to recover from and will greatly affect a student's ability to succeed (i.e. missing a class puts you in a BIG HOLE!).

Lab: Students may miss one lab for a valid, documented excuse (medical, family emergency, flood, famine, nuclear holocaust, plague of locusts, asteroid collision, etc.). Missing or not submitting more than 1 lab will result in a failing lab grade. If all labs are completed for a grade, the lowest lab grade will be dropped. Points will be deducted for lateness in lab.

Late Work:

Lecture: WebCT quizzes cannot be taken after the due date since the answers are discussed at the next class meeting.

Lab: Lab reports are due at the beginning of the next lab meeting unless otherwise specified. Late labs will be penalized one half grade after the start of class on the same day they are due, and one grade thereafter. Labs will not be accepted after one week from the original due date.

Quizzes

Questions will either be conceptual (based on the class notes) or problems (representing either class examples or homework problems). Quiz questions and problems will be asked online via WebCT. In class, a deadline will be discussed by which the instructor must post a quiz if it is due at the next class meeting. Takehome lecture (quiz) problems and online quizzes are due on the due date with no exceptions.

The conceptual quizzes given online will be totaled and can add up to 2% to the course average.

Extra Credit

An extra credit assignment may be done or a retest may be taken to bring up one test score (except the last exam). The instructor will choose the assignment and the conditions under which it is completed. The assignment or retest must be requested by the student and must be completed before the next exam. The makeup grade will be averaged with the test grade and the resultant grade will replace the test grade. This can only be done for tests with a grade lower than 65% and can bring tests up to a maximum of 65%.

Exam Makeups

Exams may only be made up if the student contacts the professor with a valid, documented excuse (see above) by phone, written note, or E-mail. The professor reserves the right to give a different
exam that may be more difficult, or to adjust the grading scale to account for the fact the student is taking the exam under different testing conditions.

Lab Makeup

If students need to miss laboratory for a valid, documented excuse (see above), the instructor must be notified before the scheduled class or immediately after as above. If this is done, a makeup may be possible. Missing or not submitting more than 1 lab will result in a failing lab grade. Students may miss one lab for a valid, documented excuse. If all labs are turned in, then the lowest lab grade will be dropped.

Lab Summaries

For every lab session, you will write a short summary of the lab that you are about to do. It should not be written in the lab notebook because it will be collected at the beginning of the lab. It cannot be late. Summaries are worth 10% of a lab report’s grade. See the criteria attached below.

Academic Honesty

Students are expected to uphold the integrity of the academic process. In addition to personal acts of plagiarism or dishonesty, students are also obligated to report any act of cheating that they witness. Acts of dishonesty will result in disciplinary action as outlined in the Student Handbook. In essence, this means you will receive a "0" for the assignment OR an "F" in the course if the assignment is central to the course. A report will also be made to the Dean of Students. Two such infractions will result in dismissal from the college.

In this course, every person does his or her own work. You may discuss and work on the laboratories together, but the report must be your own work. Blatant copying will result in a "0" for the lab that cannot be dropped. In general, this applies to any assignment that is collected for a grade. Cheating on an exam will result in a failing grade for the course.

Academic Advising

Many students self-advise and pick their own courses, while others seek the advice of registration staff. For one reason or another, we sometimes learn (too late) that students have unrealistic or ill-advised schedules. Please feel free to ask my advice or the advice of your other professors in such matters.

Physics 2

You should consider taking Physics 2 next semester. One obvious reason for this is that the skills and knowledge you acquire in Physics 1 will be lost over time. Another reason is that different schools have different topics in Physics 1 and 2, i.e., Physics 2 may start in a different place. Lastly, there is the possibility that Physics 2 may not run if there aren’t enough students!
Class Conduct

1. Don’t be late. It’s rude and it interrupts the class. If you miss a prelab discussion, points will be deducted.

2. Turn cell phones off!

3. Do not talk, sharpen pencils, staple or do anything else at times when it might be a distraction to your classmates.

4. I value your input, I want to have discussions, and I must hear your questions. However, you must raise your hand. Sometimes, I wish to let the class think, and you will ruin that if you call out the answer.

The Survival Guide: How to do well in a science course

1. Do all homework on time because
 a. If you let it pile up, you will find it very difficult to do well on the exams.
 b. Studying for a test involves doing the homework again, not the first time.
 c. Review time is review. It is driven by your questions. A conceptual quiz will also occur!

2. Studying in groups can be helpful!

3. Read the appropriate sections in the text. If I said everything, you wouldn’t remember it. In class, we learn to DO and APPLY. Read to round out your learning.

4. Do not understudy for the first exam. Although you get to do a makeup for one exam, you don’t want to have to use it on the first exam.

5. Do not wait until the day that a lab is due to complete it because:
 a. As time goes on, you will forget what was done in lab. Do it while it’s still fresh in your mind.
 b. If you have questions (and you will), then you will not be able to get them answered in time and will have to turn the lab in late. This results in a deduction of 5 to 10 points.
 c. If you just decide to hand it in with a major mistake, then you will get it back to do again. Your grade starts at an 85 on the second try, and the second time is more difficult (see “a”).

6. Keep a careful lab notebook. It is worth a lab grade.

7. Do not plagiarize or copy. It is dishonest and speaks to your character.

8. Have some fun and enjoy the course. This may be your only opportunity to take a lab science,
so enjoy it and take away all that you can from this experience.

Course Goals

Students will

1. develop techniques to view, study and ultimately master scientific material.

2. develop an appreciation for physics and an understanding of what it can tell us about the universe. Students should see how physics can explain various phenomena that they encounter every day.

3. practice critical thinking skills used to solve both quantitative and qualitative problems.

4. apply basic concepts of
 a. the metric system
 b. kinematics in 1 dimensional motion
 c. vectors
 d. kinematics in 2 dimensional motion
 e. Newton's Laws
 f. energy
 g. momentum
 h. rotational motion
 i. temperature and heat

5. practice modeling physical situations using algebra/trigonometry level mathematics.

6. work independently and in groups to solve problems.

7. gain practice in experimentation and data analysis.

8. practice writing full laboratory reports that fully present an experiment and the theory behind it.

9. use a computer for data acquisition and analysis.
Performance Objectives

Unless otherwise indicated, mastery of the following performance objectives is achieved by accurately defining and describing the specified concept, and applying this concept to assigned problems and derivations. All basic equations will be given on exams, and students will derive needed relationships from them. Exams will consist of short answer questions and problems with the greater weight on the problems.

Laboratory

1. The student will apply concepts from lecture to lab and demonstrate this through preparedness, performance, and answers to questions that they understand how a given experiment is related to physical principles discussed in lecture. In most cases, a topic will be discussed in lecture before it is used in the lab.

2. Students will prepare for lab by writing a short summary of the lab that describes WHAT is being measured or tested in the experiment and HOW it will be measured or tested. Students should know the purpose of the laboratory, be familiar with the procedure, and be able to vocalize any questions concerning the theory or procedure during the prelab discussion.

3. Students will keep and use a proper laboratory notebook as described on the attached sheet. This lab book must be used for all laboratories.

4. Students will demonstrate sound measurement technique. Students will be monitored during the laboratory. Performance will be satisfactory if students routinely participate as ACTIVE members of their laboratory groups and are observed to take measurements carefully and accurately.

5. Students will apply significant figure conventions to calculations based on experimental data to avoid overstating the accuracy of calculated results.

6. Students will perform error analysis as applicable to each experiment. Students will estimate measurement errors and carry these estimates through calculations to arrive at a range of error for an experimentally determined quantity.

7. Students will write “full” laboratory reports for some laboratories that show the ability to understand and present the theory, clearly present and analyze the data, and draw reasonable conclusions about the results. A format and example will be provided.

Lecture

1. Student must give the powers of 10 and abbreviations corresponding to the metric prefixes given in class and vise-versa.
2. Students must state the SI (mks) metric base units for mass, time, length and temperature, and be able to derive other units from them.

3. Students must perform unit conversions using unit analysis. Students must know the metric prefixes. English to English and English to metric conversions will be given.

4. Students will calculate using significant figure conventions. This is a graded part of every problem.

5. Students will define distance, displacement, velocity, and acceleration. Equations will not be given.

6. Students will solve one dimensional motion problems using the four kinematic equations. The four kinematic equations will be given, and other expressions must be derived from them.

7. **Optional:** The student will derive the kinematic equations from definitions of velocity and acceleration.

8. Students will add and subtract vectors graphically and by using components, and apply this to other problems involving vector quantities. Trigonometric functions will be given.

9. Students will solve two dimensional motion problems using the four kinematic equations and vector concepts. The four kinematic equations will be given, and other expressions must be derived from them.

10. Students will state Newton's laws and define inertia, force and mass. Students will answer conceptual questions using Newton’s laws.

11. Students will apply Newton's laws and vector concepts to static problems and problems involving acceleration.

12. Students will define and differentiate static and kinetic friction, and apply friction concepts to problems. Equations will be given.

13. Students will describe uniform circular motion by using force concepts to explain the direction and magnitude of centripetal force/acceleration, and solve problems involving uniform and non-uniform circular motion.

14. Students will calculate the gravitational force between objects using Newton’s law of universal gravitation. Students will combine this with circular motion concepts (e.g. satellites). Students will explain the origin of and calculate values for the local gravitational constant, \(g \). Newton’s law of universal gravitation will be given.

15. **Optional:** Students will use the concept of work to derive expressions for kinetic and
potential energy.

16. Students will define kinetic energy and apply the work-energy theorem to problems. Equations will be given.

17. Students will define and differentiate conservative and nonconservative forces, and define gravitational and elastic potential energy. Equations will be given.

18. Students will state and apply the law of conservation of mechanical energy to problems. Equations will be given.

19. Student will define impulse and momentum, and apply momentum concepts to problems in one dimensional motion. Equations will be given.

20. Students will define elastic and inelastic collisions, give examples of each, and solve elastic collision problems with the additional information this provides. Equations will be given.

21. Student will define center of mass, describe the properties of the center of mass, and calculate the center of mass of a system of objects. Equations will be given.

22. Student will define angular displacement, angular velocity and angular acceleration, give the direction of these quantities, and differentiate these from the linear versions. Students will apply the four rotational kinematic equations to problems. The four rotational kinematic equations will be given.

23. Student will define and describe torque, moment of inertia, rotational kinetic energy and angular momentum, and apply these concepts to problems. Equations will be given.

24. Student will state the conditions for rotational and translational equilibrium, and apply them to simple problems. No further equations will be given.

25. Students will define pressure, differentiate it from force, describe how it is measured, and apply the definition to problems involving force and area.

26. Students will state Pascal’s principle and apply it to problems.

27. Students will state Archimedes’ principle and apply it to buoyancy problems in liquids and gases.

28. Students will apply the equations of continuity to problems involving liquid flow. The equations will be given.

29. Students will apply Bernoulli’s equation to problems involving liquid flow. Bernoulli’s equation will be given.
30. Students will define streamline (laminar) flow, turbulent flow, and viscosity. Students will use these concepts to describe the differences between the behavior of ideal and real fluids.

31. Students will define heat and temperature using the concepts of work and energy, and explain the differences between heat and temperature.

32. Students will calculate heats involved in temperature and phase changes, and solve “calorimetry” types of problems. Equations and thermodynamic constants will be given.

33. Optional: Students will define and label the parts of a phase diagram including the fusion curve, sublimation curve, vaporization curve, critical point and triple point.

34. Optional: Students will define relative humidity and explain the concept of dew point and heat index. No equations will be given. If needed, a chart of water’s equilibrium vapor pressure and temperature will be given.

35. Students will describe and differentiate the three heat transfer mechanisms and apply these mechanisms to problems. Equations and thermodynamic constants will be given.

Developed/Revised: 10/13/08
Tentative Schedule (Phys 125)

The instructor reserves the right to change the topics that are covered or their order.

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Chapters / Labs / Exams</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>W 9/3</td>
<td>Introduction</td>
<td>Introduction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 1</td>
<td>Measurement, Metric Units, Significant Figures and Conversions</td>
</tr>
<tr>
<td>2</td>
<td>M 9/8</td>
<td>Chapter 1</td>
<td>Measurement, Metric Units, Significant Figures and Conversions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab</td>
<td>Measurement II</td>
</tr>
<tr>
<td>2</td>
<td>W 9/10</td>
<td>Chapter 2</td>
<td>Kinematics in One Dimension</td>
</tr>
<tr>
<td>3</td>
<td>M 9/15</td>
<td>Chapter 2</td>
<td>Kinematics in One Dimension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab</td>
<td>Position, Velocity, and Acceleration</td>
</tr>
<tr>
<td>3</td>
<td>W 9/17</td>
<td>Chapter 3</td>
<td>Vectors (and Kinematics in 2 Dimensions)</td>
</tr>
<tr>
<td>4</td>
<td>M 9/22</td>
<td>Chapter 3</td>
<td>Kinematics in 2 Dimensions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab (First)</td>
<td>Vectors</td>
</tr>
<tr>
<td>4</td>
<td>W 9/24</td>
<td>Chapter 3</td>
<td>Kinematics in 2 Dimensions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab??</td>
<td>Projectile Motion??</td>
</tr>
<tr>
<td>5</td>
<td>M 9/29</td>
<td>Review</td>
<td>Chapters 1-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapter 4</td>
<td>Motion and Force: Dynamics</td>
</tr>
<tr>
<td>5</td>
<td>W 10/1</td>
<td>Exam 1</td>
<td>Chapters 1-3</td>
</tr>
<tr>
<td>6</td>
<td>M 10/6</td>
<td>Chapter 4</td>
<td>Motion and Force: Dynamics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab</td>
<td>Atwood Machine</td>
</tr>
<tr>
<td>6</td>
<td>W 10/8</td>
<td>Chapter 4</td>
<td>Motion and Force: Dynamics</td>
</tr>
<tr>
<td>7</td>
<td>M 10/13</td>
<td>Chapter 5</td>
<td>Circular Motion; Gravitation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab</td>
<td>Friction</td>
</tr>
<tr>
<td>7</td>
<td>W 10/15</td>
<td>Chapter 5</td>
<td>Circular Motion; Gravitation</td>
</tr>
<tr>
<td>8</td>
<td>M 10/20</td>
<td>Review</td>
<td>Chapters 4-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab</td>
<td>Friction</td>
</tr>
<tr>
<td>8</td>
<td>W 10/22</td>
<td>Exam 2</td>
<td>Chapters 4-5</td>
</tr>
<tr>
<td>9</td>
<td>M 10/27</td>
<td>Chapter 6</td>
<td>Work and Energy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab</td>
<td>The Work-Energy Theorem or Conservation of Energy</td>
</tr>
<tr>
<td>Date</td>
<td>Day</td>
<td>Chapter</td>
<td>Topic</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>9</td>
<td>Wed</td>
<td>10/29</td>
<td>Chapter 6</td>
</tr>
<tr>
<td>10</td>
<td>Mon</td>
<td>11/3</td>
<td>Chapter 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lab</td>
</tr>
<tr>
<td>10</td>
<td>Wed</td>
<td>11/5</td>
<td>Chapter 7</td>
</tr>
<tr>
<td>11</td>
<td>Mon</td>
<td>11/10</td>
<td>Review</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chapter 8</td>
</tr>
<tr>
<td>11</td>
<td>Wed</td>
<td>11/12</td>
<td>Exam 3</td>
</tr>
<tr>
<td>12</td>
<td>Mon</td>
<td>11/17</td>
<td>Chapter 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lab</td>
</tr>
<tr>
<td>12</td>
<td>Wed</td>
<td>11/19</td>
<td>Chapter 8</td>
</tr>
<tr>
<td>13</td>
<td>Mon</td>
<td>11/24</td>
<td>Chapter 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lab</td>
</tr>
<tr>
<td>13</td>
<td>Wed</td>
<td>11/26</td>
<td>Chapter 10</td>
</tr>
<tr>
<td>14</td>
<td>Mon</td>
<td>12/1</td>
<td>Chapter 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lab</td>
</tr>
<tr>
<td>14</td>
<td>Wed</td>
<td>12/3</td>
<td>Chapter 13 & 14</td>
</tr>
<tr>
<td>15</td>
<td>Mon</td>
<td>12/8</td>
<td>Chapter 14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lab</td>
</tr>
<tr>
<td>15</td>
<td>Wed</td>
<td>12/10</td>
<td>Chapter 14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TBA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chapters 8, 10, 13-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TBA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chapters 8, 10, 13-14</td>
</tr>
</tbody>
</table>
Prelab Summary Criteria

For every lab session, you will write a short summary of the lab that you are about to do. It should not be written in the lab notebook because it will be collected at the beginning of the lab. It cannot be late. Summaries are worth 10% of your lab grade.

The summary should address the following questions. Number them.

1. What is the Goal? Specifically, what will you have found, compared, etc. by the end of lab? (Typically 1 to 3 sentences)

2. What measurements are you taking? (I.e., what measurements lead to the “goal” you mentioned above?) How or with what are you taking them? (Typically a few sentences to a paragraph)

3. How is the result (goal) calculated or determined from the measurements? (I.e., relate #1 and #2 above.) How is the data being analyzed? Give the equations if known.

4. Anything else worth mentioning? What was unclear?
Laboratory Notebook

(A link to interactive sample notebook pages may be found on my homepage.)

Purpose:
To provide a formal, organized work space/log in which one can record data and work through the calculations of an experiment. It will help you organize your thoughts and retain useful information.

General:

The pages should be fastened securely, so the laboratory notebook should not be spiral-bound or perforated. A string-bound composition notebook is a good example of an acceptable notebook.

1. Write in pen. Neatly cross out mistakes. No white out! Do not rip pages out!

2. The inside cover should have information such as your name, address, home phone number, instructor, etc. This will ensure that the notebook and all the data that you have worked so hard to obtain will always find its way back to you.

3. The third page is where you should start a table of contents. Update this as necessary.

4. Number the pages as you go, using both sides of each page.

5. The first experiment should start on about the 5th page.

6. Skip a few pages between experiments.

7. Keep the notebook in chronological order. (I.e., record the data as it comes.) Avoid leaving space for things and filling them in later.

8. If you miss a lab, you must still write the title and date of the experiment at the appropriate point in the notebook.

9. Use the last several pages for reference. Write universal constants, equations, and reminders that you find frequently useful.

10. **Show your lab notebook to the instructor before leaving lab!**
For each experiment, label the following sections:

1. Title, Experiment Number, Date, Lab Partners, etc.

2. Lecture Notes

 Record any diagrams, mathematical derivations and procedural notes given by the instructor. The purpose of the experiment should be prominently displayed first. Everything mentioned in the prelab discussion should be here.

3. Data/Calculations (Start a new page)

 Any data you take goes here first!!! Data must be taken directly into the laboratory notebook as you acquire it. The laboratory report is a final draft only. I reserve the right to deduct points if you are not taking data directly into the notebook. Also, attempt all calculations in the notebook first. Again, the laboratory report is a final draft only. Your results should stand out!

Remember: Data is taken directly into the lab notebook. Your first attempts at calculations are also written there. You don't have to write everything twice, but make sure your calculations are correct in the notebook before attempting to fill in the lab report. If you are observed not using your lab notebook, a penalty of 10 points off your lab grade will result!
‘Full’ Laboratory Report Format (For Some Labs)
See the link on my homepage for an example of a full lab report.

Abstract: Summarize your results in written form. What was measured? How was it measured? What was your result? Did it agree with theory? (1 paragraph).

"The local gravitational constant was measured by timing a falling metal bearing with a pendulum of known period. Our result was \(g = 10.0 \, \text{m/s}^2 \pm 0.1 \, \text{m/s}^2 \). This does not agree with the accepted value of 9.806 \(\text{m/s}^2 \). Possible sources of error are … ”

Theory: In this section, you should:
1. Write a general introduction describing the relevant theory. Describe the theory behind the lab, introducing any needed concepts and quantities.
2. Use basic equations to derive those used in the experiment. Don't just list equations unless instructed to. Explain how they are applied to the experiment. In many cases, you will need to refer to a diagram of the apparatus or a free-body diagram. For example, a portion of the theory section may look like:

 One common definition of torque is \(\tau = I \alpha \)

 If you can measure the applied torque, \(\tau \), and the angular acceleration, \(\alpha \), "I" may be determined. For the system shown in Figure 2, the applied torque is given by

 \[\tau = Fr \sin(\theta) \]

 where \(r \) is the radius and the tension, \(T \), is given by

 \[T = m(g - a) \]

 This may be derived as follows.…

Experimental: The goal of this section is to tell the reader how the experiment was performed and what was used so that it may reproduced.
1. List equipment used in this laboratory.
2. Draw any apparatus used to take measurements and label measured quantities.
3. Summarize the procedure using the past tense. Don't use a "recipe" format (i.e. do not write “Step 1, 2, 3…”). Use a discussion format. Explain how the apparatus was used, relating it to the quantities listed in the Theory section.

Data & Analysis: Present the data using one or more tables. You may include the results of the analysis in the same tables, if appropriate. Then, perform calculations using the data to obtain your results. Put any needed graphs here. Perform error analysis, if applicable.

Results/Discussion: Discuss probable causes of errors and the meaning of your results. Dig deep! How would you improve this experiment next time? What is the next experiment you would do?
Welcome to WebCT!

WebCT is a suite of tools developed by the University of British Columbia to deliver sophisticated Web-based courses. It is presently being used by universities and colleges all over the world to deliver online learning. If you have taken an online course at ACCC before, chances are you may have used WebCT already.

In this course, your instructor has decided to use some of WebCT's tools to help enhance your overall learning experience. Some of the tools you might use are for communicating with your instructor and fellow students, like the Mail, Discussions or Chat tools, while other tools allow you to access course handouts and materials, or take online quizzes. If you have any trouble using the tools, you can click on "Help," next to "Course Map" at the top of your screen.

To get into WebCT, follow these directions:

1. Go to http://webct.atlantic.edu:8900/
2. Click "Log on to My WebCT."
3. Enter your User Name, which is your last name and the last 4 digits of your Social Security #. For example: smith1234. Do not use any spaces, and use all lower case letters. (Note: If your last name is hyphenated, for example: Smith-Jones, then only use the first part of the name, followed by the last 4 digits of your Social Security #. For example: smith1234.)
4. Enter the Password, which is your birthday (mm/dd/yy - no dashes or spaces). Eg. If you were born on May 21, 1967, you would type: 052167
5. Click OK.
6. Click on the course name located in the upper left corner to enter the course.

If you have any technical trouble with getting into your course, feel free to contact the Instructional Technology Department during business hours by phone (1-800-617-2191) or via the Web at http://www.atlantic.edu/onlinehelp

A Note about accessing your course from home:

Please use one of the recommended web browsers: Microsoft Internet Explorer 5.0, 5.5, 6.0 (PC), Microsoft Internet Explorer 5.1 (Mac OS9, OSX.1), Microsoft Internet Explorer 5.2 (Mac OS9, OSX.2), Netscape 6.2.x (PC and Mac), Netscape 7.0 (PC and Mac OSX).

AOL users: There may be some problems with taking online tests. If this happens to you,
do not use the AOL browser to get into your WebCT course. Instead, connect to the Internet using AOL, minimize AOL and use one of the recommended browsers. Internet Explorer users are urged NOT to save their passwords when login box appears.

(If you do not have a computer at home, you can still access WebCT in any one of the computers labs at our Mays Landing, Atlantic City or Cape May campus locations.)

Frequently Asked Questions

What do I need on my home computer?
You'll need Windows 98, 2000 or XP, or Macintosh OS9, OS10.1.x, 10.2.x. You will need a connection to the Internet (e.g. 56K Dialup, Cable, or DSL, etc.) You should also have one of the recommended browsers:
- AOL 7.0 and 8.0 (PC)
- Microsoft Internet Explorer 5.0, 5.5, 6.0 (PC)
- Microsoft Internet Explorer 5.1 (Mac OS9, OSX.1)
- Microsoft Internet Explorer 5.2 (Mac OS9, OSX.2)
- Netscape 6.2.x (PC and Mac)
- Netscape 7.x (PC and Mac OSX)

The semester’s officially started, but I still cannot log in. Now what?
Be sure you are typing your login information (UserID and Password or Course codes) correctly as listed on the first page of this letter. If you still need help, call the ACCC Online Course Helpline (1-800-617-2191) or send your question via the Online Help Request Form at: http://www.atlantic.edu/onlinehelp

What if I'm able to access my course just fine, but later in the semester I cannot get in?
If at any time during the semester our academic servers go down for maintenance or technical problems, you can verify their status by checking the Server Status Page, at http://www.atlantic.edu/status.html

I have a personal firewall on my home PC. Is this a problem?
YES. Look at your firewall software documentation for how to temporarily disable the firewall when you want to work on your online course.

I have software on my computer that stops those annoying Internet pop-up ads. Is this a problem?
YES. Some of our online courses have tools that open in new windows (like Mail, Quizzes, etc). Refer to the documentation that came with your pop-up stopper software to temporarily disable it when you want to work on your course.
I use Yahoo Companion. Is this a problem?
YES. Disable it when you want to work on your online course.

When I attempt to log in to WebCT I receive a message: "You entered an incorrect username or password."

Your username is your last name plus the last 4 digits of your SS#. Your password is your birthday (mm/dd/yy - no dashes or spaces).

When I attempt to log in to WebCT I receive a message: "Page cannot be displayed." OR "When I attempt to go to WebCT I receive a blank screen or message: "Unauthorized to view this page."

If you have a firewall installed on your computer, you must disable it or open up port 8900 on it to access your course through WebCT. Look at your specific firewall software documentation for how to temporarily disable it.

Every time I click to log on to WebCT, I am re-directed to a search engine (perfectnav).

Make sure that you do not have Kazaa or another peer to peer (P2P) file sharing service installed on your computer. If so, it's been known to conflict with logging into WebCT in many instances. If that's the case, it must be disabled or even sometimes uninstalled for you to be able to log into WebCT.

When I click on Mail and Discussions or when I try to take an exam nothing seems to happen.

If you are having difficulties with takings Exams or using the Mail and Discussions tools then you probably have a pop-up blocker installed on your computer. If so, disable the pop-up blocker software for those WebCT tools to work.

I can access my course, but when I try to click on any of the icons on the homepage of the course I get a blank screen.

Check to see if you have Yahoo Companion or another Internet Companion installed on Internet Explorer's toolbar. If Yahoo Companion is installed, you will see a red Y on the toolbar near the top of Internet Explorer. You will need to click on this Y and unistall Yahoo Companion to eliminate the problem.